高中數(shù)學(xué)知識總結(jié)
更新時間:2024-02-21 15:55:17 檢討書 我要投稿
總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),不如我們來制定一份總結(jié)吧。但是總結(jié)有什么要求呢?下面是小編為大家收集的高中數(shù)學(xué)知識總結(jié),歡迎閱讀與收藏。
一、集合間的關(guān)系
1.子集:如果集合A中所有元素都是集合B中的元素,則稱集合A為集合B的子集。
2.真子集:如果集合AB,但存在元素a∈B,且a不屬于A,則稱集合A是集合B的真子集。
3.集合相等:集合A與集合B中元素相同那么就說集合A與集合B相等。
子集:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含于B”(或“B包含A”),這時我們說集合是集合的子集,更多集合關(guān)系的知識點(diǎn)見集合間的基本關(guān)系
二、集合的運(yùn)算
1.并集
并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
2.交集
交集:以屬于A且屬于B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
3.補(bǔ)集
三、高中數(shù)學(xué)集合知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,Nx
2.子集、交集、并集、補(bǔ)集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且)
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補(bǔ)集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若,則;
③若且,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。
4.有關(guān)子集的幾個等價關(guān)系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB =空集CuA B;⑤CuA∪B=I A B。
5.交、并集運(yùn)算的性質(zhì)
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數(shù):設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
四、數(shù)學(xué)集合例題講解:
已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}
對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…,…},N={…,, ,,…},P={…,,,…},這時不要急于判斷三個集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈N,∈N,∴M N,又= M,∴M N,= P,∴N P又∈N,∴P N,故P=N,所以選B。
點(diǎn)評:由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合,則( B )
A.M=N B.M N C.N M D.
解:
當(dāng)時,2k+1是奇數(shù),k+2是整數(shù),選B
定義集合AxB={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則AxB的子集個數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合AxB子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵AxB={x|x∈A且x B},∴AxB={1,7},有兩個元素,故AxB的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數(shù)為
A)5個B)6個C)7個D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析本題集合A的個數(shù)實(shí)為集合{c,d,e}的真子集的個數(shù),所以共有個.
已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實(shí)數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實(shí)數(shù)b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點(diǎn)評:在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M(jìn)∩N=N, ∴N M
①當(dāng)時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0,}
已知集合,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼,若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在有解,再利用參數(shù)分離求解。
解答:(1)若,在內(nèi)有有解
令當(dāng)時,所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程有實(shí)根,求實(shí)數(shù)a的取值范圍。
解答:
【高中數(shù)學(xué)知識總結(jié)】相關(guān)文章:
曠課檢討書(合集20篇)2024-01-29
高中數(shù)學(xué)知識總結(jié)2024-02-21
春節(jié)喜慶的祝福語2024-02-21
熱門班主任綜合評語錦集2024-02-21
服務(wù)態(tài)度檢討書2024-01-08
有關(guān)宿舍學(xué)生檢討書2024-02-07
宿舍半夜打牌檢討書2024-02-06
向媽媽認(rèn)錯檢討書(經(jīng)典)2024-02-05
[精華]大學(xué)生使用大功率電器檢討2024-02-05
高中生上課吵鬧檢討書2024-02-05
- 學(xué)生打架萬能檢討書
- 初中生晚自習(xí)嗑瓜子檢討書
- 初中生網(wǎng)課沒有聽講檢討書
- 員工辦公室抽煙檢討書
- 工作態(tài)度不好檢討書[熱]
- 高一學(xué)生上課睡覺檢討書
- 沒帶書的檢討書
- 初中生打架自我檢討書
- 自我反省檢討書常用[15篇]
- (實(shí)用)軍訓(xùn)檢討書
- 逃課檢討書(精選)
- 部門開會遲到的檢討書
- 最新犯錯誤檢討書 犯錯誤檢討書
- 關(guān)于犯錯誤檢討書
- [必備]檢討學(xué)生的檢討書
- 管理失職檢討書14篇(精品)
- 檢討學(xué)生的檢討書合集【15篇】
- 上課說話檢討書精品
- 中學(xué)學(xué)生檢討書集合
- (優(yōu))違規(guī)電器檢討書